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Abstract

Cwo phase Hows can be found in broad sitations in nature. biowgy. and industry devices
and can involve diverse and complex mechanisms. While the phvsical models mav be specific
for corrain ~iruarions. the marhemarical forznidation nd anmericu eeatient for solving the
governing equations can be general. Based on the continuum mechanics. we <hall rrear the Ruid
as A mixoire consisting of fwo interacring phases -or materials) ocetpoing the same region in
space at any given moment. Hence, we will require information concerning each individual phase
as needed in a single phase. but also the interactions between them. These interaction terms,
however, pose additional numerical challenges because they are beyond the basis that we use to
construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to
disparate differences in time scales, fluid compressibility and nonlinearity become acute, further
complicating the numerical procedures. In this paper. we will show the ideas and procedure
how the AUSM-family schemes are extended for solving two phase flows problems. Specifically,
both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in
phase interactions are extremely short in comparison with those in fluid speeds and pressure
fluctuations. Details of the numerical formulation and issues involved are discussed and the

effectiveness of the method are demonstrated for several industrial examples.

1 Extension to Real Fluids and Flows with Equilibrium
Phase Change

Prior efforts in the construction of AUSM-type algorithms have assumed that the fluid behaves
as an ideal gas or a mixture thereof. This section details recent extensions of AUSM-type
schemes that are valid for generalized state equations, which may describe single-phase liquid,
gas, or supercritical fluid behavior of a given substance. Due to the dramatic differences in
compressibility among fluids in the different states and possible large differences in the flow
speed, the “preconditioned” forms of the fAux-splitting methods are utilized in the extensions.
A second thrust of this section is to provide an initial direction toward the development of
extensions suitable for solving the general multiphase flow problem for arbitrary flow speeds and
arbitrary levels of compressibility. This initial step starts with the development of an equilibrium
model for liquid-vapor phase transitions using information extracted from a generalized state
equation. The resulting equations are similar to the preconditioned. perfect-gas Euler system
in structure and in mathematical character but may admit such multiphase flow features as

cavitation zones and vapor-liquid condensation shocks.

1.1 Real Fluid State Description
1.1.1 Single Phase Formulation

The thermodynamic state of a single-phase real Huid is defined by the relations p = p(p. T) and
h = h(p.T). In the present work, we utilize the Peng-Robinson equation of stare [1]. a cubie
formutlation similar o the Van der Wints equation but generadly much more accurate in the

tiquid phase. The Peng-Robinson equation is given by
p=2Zp )R (ry
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Given the Hiid presoirs and temperarure, rhis eanation may he solved for the comprossibilicy
factor, and the fluid molar density may be then be determined by

. P

P = 5o 1.6
ZRT (1.6)

The constant b is a function of critical-point fluid properties, while the function a(T) is a function
of critical point properties and the fluid temperature. The functional form for a(T) can differ
depending on the polarity of the molecule. The calculations presented herein (for carbon dioxide

(CO2) and octane) utilize expressions derived in {1] and given below:
T

a(T) = a(Te)a(Tr,w), T; = T (1.7)
Rz 2 ‘
a(T.) = 0.45724—=< (1.8)
P,
oTr,w) = (1 + x(1 = VT;))? (1.9)
& = 0.37464 + 1.54226w
- 0.26992.. (1.10)
b =o.07780RT° (1.11)
P

The critical point constants T, and F. and the accentricity factor w are tabulated below for
CO; and octane.

fluid | T, (K) | P. (Pa) w

CO, 302.2 | 73.75e3 | 0.225

octane | 569.4 | 24.96e5 | 04

The expressions presented above are strictly valid for non-polar molecules. Polar molecules,
such as water, require different forms for a and 4 to match experimental liquid-state density and
vapor pressure data properly.

Typical isotherms for the Peng-Robinson equation are plotted in Fig. 1.1 on a pressure-
density diagram. Clearly indicated is the vapor regime, where pressure varies nearly linearly
with density, and the liquid regime, where large pressure changes are required to induce a density
change. For a given pressure and temperature, the solution of (1.3) returns one or three values of
the compressibility factor Z, the former corresponding to the single-phase region (either liquid
or vapor} and the latter corresponding to the two-phase region, where vapor and liquid may
exist simultaneously. The corresponding densities for a pressure within the two-phase region are
shown as potnts A-C. A and C represent saturated vapor and liquid states, while B is physically
meaningless. For a particular temperature, the “allowable” two-phase region is bounded by
the pressure values at D and E, which are local extrema. The loci of these pressure values
for temperatures between the triple and critical points define liquid and vapor spinodal curves,
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Figure 1.1: Pressure vs. molar density (isotherm below critical temperature).

dividing the two-phase region into metastable vapor, unstable, and metastable liquid regions. At
a particular pressure between the liquid and vapor spinodal points, the system is in equilibrium,
with the vapor and liquid fugacities attaining equal values. This pressure is known as the vapor
pressure pvap and is calculated as a function of temperature by iterating on the equation

f(Z'hTap):f(Zl)Typ)y (112)
where the fugacity f is given by
f A Z+(1+V2)B
In==Z2-1-In(Z-B)- | . 1.13
) MZ~B)- 758 N ZTa-v2B (1.13)

The spinodal pressure and density values (points D and E in F ig. 1.1} can be obtained ana-
lytically by solving the quartic equation gglr = 0, discarding two meaningless roots that occur
outside the range of validity of the Peng-Robinson equation. The spinodal pressure values bound
the actual vapor pressure, and an appropriate linear combination can be used as an initial guess
for the iteration described above.

The thermodynamic state description for the single-phase fluid is completed by the spec-
ification of enthalpy departure functions [2], which introduce a density dependence into the
enthalpy description and thus account for latent heat effects. For the Peng-Robinson equation,
the enthalpy per unit mass of the Auid may be expressed as

T%ﬂ,ﬂ-a(r)l Z+{(1+V2)B

1
h(p,T):h,(T)+m[RT(Z—l)+ oD "(z+(1—\/§)3”' (1.14)

where h;(T) is the enthalpy per unit mass of an ideal gas at the same temperature (determined
from curve fits presented in McBride, et al [3]).
The physical sound speed of the fluid can be calculated from thermodynamic considerations;

a more useful CFD analogue is the acoustic eigenvalue. which may be obtained by determining

the eigenvalues of the Jacobian matrix %— % where £ 15 an Euler Hux vector closed according

to the general expressions p = p(p, T) and ph = ph(p.T). U is the vector of conserved variables.,
and Wois the vector of primitive variables [p, . v, 1. T|". The choice of ph (rather than A) and

the choices of density and temperature as independent variables are dictated by the equilibrium
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1.1.2 Homogeneous Equilibrium Two-Phase Flow Model

.-

The Peng-Robinson rquarion (and similar onest gives no useful information in the nnstable parts
of the two-phase cegion. For densities between the spinodal values. it can be shown that the
acoustic eigenvadues are complex. meaning rthar rhe Euler svstem is not hyperbolic in tune and
that conventional time-marching procedures for integrating the equations are ill posed. It is also
of note that the liquid spinodal pressure may be negative for bhigh molecnlar-weighe lignids at
lower temperatures, implying that the simulated expansion of a liquid might produce reasonable
densities. but unphysical pressures, in the metastable region.

One weans of avoiding tnese difficuities starts with the introduction of a void-fraction formal-
ism for the two-phase region and the assumption of thermodynamic and kinematic equilibrium
between the phases. For an equilibrium two-phase flow, the vapor pressure pvap(T) is directly
related to the temperature through the Clausius-Clapyron equation, and the density and tem-
perature are independent variables. Given updated values for the density and temperature at a
grid point as determined from a time-integration method. the following procedure is performed:

1. Determine the vapor pressure at that temperature, either through reference to a curve-fit
or by the iterative procedure described above, and establish the saturation densities a(T)
and p,(T) and the saturation enthalpies h(T) and h,(T) using (1.3), (1.6) , and (1.14).

2. If the fluid density is within the saturation limits, the equilibrium equation of state for the
homogeneous mixture of liquid and vapor is given by

p=pvap(T) (1.16)

Ph(p,T) = py(T)au(p, T)hu(T) + pi(T)eu(p, T)he(T) (1.17)
__ p—p(T)

a(p.T) = pu(T) — pu(T) (1.18)

ap,T)=1—-a, (1.19)

3. If the density is not between the saturation values or the temperature is greater than the
critical value, then the single phase description given by the Peng-Robinson equation will
be used to determine the pressure and enthalpy.

In this description, the saturation-state values are strict functions of temperature; density de-
pendence is introduced through the void fractions a and latent-heat effects arise through the
change in departure enthalpy between the saturation states. The thermodynamic derivatives
Po. pr. (ph),. and (ph)r needed in the time-integration method and in the sound speed defi-
nition can be computed by straightforward differentiation of the expressions above. These are
discontinuous at phase transition points, leading to dramatic changes in the effective “sound
speed” in the two-phase region. Figure 1.2 plots a® as a function of molar density for both
the Peng-Robinson equation and the Peng-Robinson equation augmented by the equilibrium
two-phase flow model (1.16-1.19). The fluid is octane at a temperature of 350 K. As shown, the
equilibrium two-phase description preserves a real value for the “sound speed”, while the basic
Peng-Robinson equation results in negative values for a®. Also shown is a theoretical result for
the sound speed in a homogeneous two-phase mixture of tiquid and vapor [4]:

l 5
LI “’ _ CT‘ (1.20}
pa- P\ Ty praf(Th

where ui AT ace obrtauned from (L 13) evaduated at the saturation states 20 1{T). The vigenvalue

calenlation for a” agrees reasonably well with the theoretical estimate except near single-phase
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Figure 1.2: @? vs. molar density (octane at 350 K).

/ two-phase junctures, where the latter blends smoothly with the saturation-state values and
the former exhibits a jump discontinuity. The theoretical expression for the sound speed is
numerically more robust and is used in all calculations presented herein. Both expressions
result in very small values (on the order of meters per second) for the “sound speed” near the
liquid phase / two-phase interface, meaning that a shift to a locally “supersonic” flow condition
during a phase transition is a distinct possibility.

The above formulation neglects velocity-slip effects, with the velocity actually solved for
being a phase-weighted average velocity. This system is hyperbolic in character and is similar
to the Euler system in structure but admits such multiphase features as cavitation zones and
condensation shocks. A key element is the use of density and temperature as the “working”
thermodynamic variables, particularly in contrast with the low-speed formulation described
earlier, which utilizes pressure and temperature as the “working” thermodynamic variables.
This choice is driven by the equilibrium closure for the two-phase region, in which pressure and

temperature are not independent variables.

1.2 Time-Derivative Preconditioning

The utility of time-derivative preconditioning in the solution of the real fluid system described
above lies in its ability to provide a smooth transition between nearly incompressible conditions
(such as liquid phase or low Mach number vapor or supercritical fluid phase flows) and strongly
compressible conditions (such as two-phase flows or high-speed vapor phase flows). As discussed
previously, modifications to AUSM-type discretization are required to extend their range of
applicability to flows at all speeds. These modifications depend on the choice of preconditioner,
through the use of the eigenvalues of the preconditioned system. As in the previous work, the

real fluid extension utilizes the preconditioner of Weiss and Smith 5], which may be expressed
as a rank-one perturbation of the Jacobian matrix a‘% The time-derivative term in the real
Huid Euler system is replaced by
aw aU W
— = (o + O ) — 121
ri)t (0”,+ i )()t i )

where

Z={buov w H" {1.22)
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where W is the local Mach anmber (based ou the velocity magmeouder and M., 15 4 user-specibied
cutolf Mach ainber discussed earlier. Again. the vector 18 15 chosen as iponeow. T)T so that
the proper closure of the system for an equilibrium two-phase How is achieved. At low speeds.
this preconditioner essentially replaces the physical thermodvnamic derivative pp with 1/1732
eesealing rthe eigenvalues of the Euler svstem so that the condition aumber remains bounded.
This allows aniform convergence in both low-speed and high-speed fows. The eigenvalues of
C704 A = DF/II ) are won’ = a’. where u is the wolocity vomponeat i the r direction and
u' t a’ are as obtained in (??). Note that the real fluid state description does not affect the
form of the eigenvalues - only the “sound speed” must be redefined.

1.3 AUSM-type Algorithms for Real Fluids

Procedures for extending AUSM-type algorithms to operate effectively in conjunction with time-
derivative preconditioning have been proposed in [6]. These methods reduce to a standard
upwind formulation at sonic transitions, preserving the discontinuity-capturing traits of the
methods, but recover viable discretization of the incompressible flow equations as the Mach
number approaches zero. As the real-fluid state description shares a structural similarity with
the Euler system with and without preconditioning, it is anticipated that modifications to
AUSM-type algorithms to allow accurate capturing of real fluid phenomena at all speeds should
be relatively straightforward.

A key element in the construction of “all-speed” AUSM-type flux-splitting schemes is the
need for including a pressure-diffusion term to couple the pressure and velocity fields at low
Mach number. At higher speeds, the effect of the pressure-diffusion contribution is reduced
(for AUSMDYV and LDFSS) or eliminated (for AUSM<+). For “preconditioned” AUSM+, the
pressure-diffusion contribution to the interface flux can be written as

1
F —; (.1_ )M x Di T Pitl ,!: (1.26)
Y2pd, AUSM+ ~ /237 VZAUSM+ T By Ear w '

H i/i+1
where d is the “preconditioned” sound speed defined in (??) and evaluated using averages of left
(i) and right (i + 1 state information. The quantity M 24U M+ is an interface Mach number
function, defined as ‘

M”‘-’AUSM+ = M5y (M) = M, (M) - M) (Masd) + M7 (M) (1.27)
The subscript notation i/i + 1 on the vector of “advected” variables (1, u,v,w, H]T indicates its
evaluation at either the left or the right state, depending on the sign of the complete interface
mass fux (advective contribution plus pressure diffusion contribution).[6] The “preconditioned”

version of LDFSS [7] contains a similar term:

1 L
" 1% D " "
. = b= . O~ Feety . ; 9
iy LoFss = T M2 Lprss A Foe M ) (L.28)
H H
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The function C, . i scheme-dependent but is order unity. The coetficient -
order unity for gases. but for liquids and supercritical Auids governed by the P(e-ng-R.obinson
equation. the coefficient may become much larger than unity. This represents an nnphysical
source of numerical diffusion for liquid-state calculations, one easily eliminated by redefining
the pressure-diffusion contributions as

1
F, =g (i - M x BiZPit1 Z (1.31)
Y7pd, AUSM+ = 2\ T N M2y ey a?+al, |, , :
H ifi+1
and
1 1
a1/2 Pi — Di+1 u U
Fl/?.pd' LDFSS = M_le/zLDFSS X m[ﬂ: ::J + pit1 :IJ) ]1 (132)
H i H i+1

To enable an exact reduction to the appropriate incompressible limiting form, the interface
sound speed can be redefined as

12,
%125 USM4 = 5(0‘ +aj,, (1.33)

and as
2 2
_ [ Pigy +pi+la.'+1
“2LDsS =\ "o o (1.34)

All other aspects of the Aux-splitting are the same as outlined in Sections ?? and ?? and Refs.
(6] and [7]. It should be noted that the modifications do affect the response of the schemes for
perfect-gas calculations. For both schemes, the magnitude of the pressure diffusion contribution
is lowered by a factor of 1/, while for AUSM +, the ability of the scheme to capture a stationary
shock wave with no intermediate point is disrupted by the definition in (1.33). Neither of these
differences affects the performance of the schemes strongly.

1.4 Higher Order Extension

To extend the methods outlined above to secondd-order spatial accuracy. we utilize slope-limited
Fromm interpolations of the primitive-variable vector oo v.w. T)T to the i + 1/2 interface.
As the state description is quite comnplex and expensive to calculate, some simiplifications are
crployed. Firse, only the pressure and enthalpy are determined from the interpolated density

[y



Phe ek more cxprenseve o e calonlarion e o precformed s pare

vl et e e
e S ool cader cven of ol

I nternolation s the weeaoes sode aned

goelad carher than tnrerpolited date s aseds N anudar coneession (s tade e the delinmion

dothe peconditioned” Sonnd speed (1Y) where ayaun, only arithmetic averages astng nodad

quantitoes e used. Ay oan cxample of rins selective gse of wirerpolared dara, second order

et b e ACSM < and LDESS prossuee ditfusion rerms are <hown below

t
p P 1

. L~ PR 3
- =y ol — = DV . | : '1.33)
Fru arsa- =1 SRR R | ’

i,

and

r 1 7 1

/2 PL — PR y ’
Fla =~ My s X —5—————{pr | v + v y 1.36
'“*pd, LDFSS ~ M2 Y2LDFSS pia; + pisial, v w & w b

H), Hi,

In these, the notation L, R represents the use of interpolated values, whereas the notation i+l
represents the use of nodal values. Results shown later utilize both the minmod and Van Leer

limiters in defining the interpolated data.

1.5 Applications

The techniques outlined in earlier sections have been incorporated into an implicit Navier-
Stokes solver based on Gauss-Seidel relaxation (8], recently extended to multiblock domains. To
minimize modifications to the code and to facilitate possible changes in the state description,
the thermodynamic derivatives Pp, pr, (ph), and (ph)r are computed and stored as arrays,
then used as needed in the construction of the flux Jacobian matrices. Viscosity and thermal
conductivity data for the single-phase regions are taken from (9] and [10]. For the two-phase
region, it is assumed that the mixture viscosity and thermal conductivity can be expressed as
void-fraction weighted averages of the saturation-state values. A quasi- 1-D Euler solver has
also been written to test basic attributes of the methods. The test cases below illustrate some

general features of the schemes.

1.5.1 “Faucet” Problem

The “faucet” problem [11] is a classic test case for two-fuid codes. In the present context, the
fluid is taken to be liquid octane in kinematic and thermodynamic equilibrium with its vapor
at a temperature of 350 K and a vapor pressure of 2061 Pa. The calculation encompasses
a one-dimensional domain of 12 m, with the inflow conditions specified by the temperature,
the void fraction of octane vapor (taken as 0.2), and the velocity of the stream (taken as 10
m/s). The solution is forced by a gravity vector aligned in the direction of the flow, leading to
acceleration of the Auid and an increase in the vapor-phase void fraction as the density decreases.
A steady solution is obtained over time, with the transient response being the propagation of
a discontinuous void wave downstream. With the present closure for the two-phase region, the
problem is hvperbolic in the flow direction, as the effective “sound speed” is much smaller than
the 10 m/s velocity. As such, all variables are fixed at the inflow and all are extrapolated at
the outHow. Figure 1.3 presents calculation results for the void wave profile at a particular
tstance intune with an analytic solution for the two-phase. separated How problem. A simple
Euler explicit integration method is used. Only results from AUSM + are shown, as both schemes
revert to the siune upwind-biased discretization for this problem. The Hrst-order upwind scheme,
operating at a CFL of 1.0, captures the void discoutinaity vather sharply but diffuses the peak
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Figure 1.3: Octane vapor void fraction vs. x and time.

value. The second-order minmod and Van Leer - limited extensions require a much smaller
CFL of 0.1 to maintain a reasonable degree of monotonicity in the void fraction profile. The
Van Leer - limited case provides a slight improvement in the resolution of the peak value but
due to the reduction in CFL number, the overall results are only marginally better than the
first-order result. The minmod-limited result is slightly worse than the first-order result, again
a consequence of the lower CFL number. It is likely that the second-order results would improve
with the use of a more appropriate integration scheme.

1.5.2 Quasi - 1-D Liquid Expansion

The next test case considers the flow of initially liquid octane through a converging-diverging
nozzle defined by the area relationship

Az) =1+4(z-1/2)%0<z< 1 (1.37)

The initial conditions are Pp=4x10"Pa, T =340 K, and u = 10 m/s, with the nozzle exit
pressure set to 0.7 times the initial pressure level. This problem mimics a cavitating flow in
that the pressure drop experienced as the flow accelerates through the nozzle throat is steep
enough to force a transition to the vapor phase. The fixed exit pressure forces a recompression
back to the liquid state. simulating the collapse of a cavitation region. Figure 1.4 presents
pressure distributions for three state equations: the Peng-Robinson (P-R) state description
with the equilibrium two-phase flow model, an ideal gas equation of state, and the unmodified
Peng-Robinson state description. As shown, the pressure level in the throat lowers to unphysical
levels for the unmodified Peng-Robinson equation, representing a progression into the metastable
liquid region. The equation system remains hyperbolic, however. as the density does not drop
below the liquid spinodal value. In contrast, the pressure level for the Peng-Robinson equation
with the equilibrium two-phase flow model lowers to the vapor pressure of octane. This results
in the generation of a vapor phase and a decrease in the fluid density (Fig. 1.5). As expected,
the liquid octane density varies little in the convergent section of the nozzle. The shock-like
recompression of the two-phase Huid back to the liquid state 15 captured well by both the
AUSM+ and LDFSS discretizations. Some effects of the higher-order extensions can be seen in
the positioning of the condensation shock. and licele ditference between the AUSM + and LDFSS
predictions is observed. Pressure distributions from a perfece-gas closure are also shown in Fig.

LY
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Figure 1.4: Pressure vs. x: expanding liquid octane.

1.4, with the comparisons highlighting the expected differences in the flow response due to the
state description. The shock wave is captured monotonically by all methods.
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Figure 1.5: Density and vapor void fraction vs. x: expanding liquid octane.

1.5.3 Liquid CO, Expansion Through a Sharp Orifice Nozzle

Figure 1.6 illustrates axial velocity and density contours in the interior of a reservoir / capillary
nozzle system for spraying liquid CO-. A two-block grid is utilized. with the reservoir block
containing 63x133 points and the capillary nozzle block containing 97x97 points. The flow is
axisymmetric, and the reservoir total conditions are p, = 10 x 108 Pa and T, = 290A". These
conditions place the tncoming Huid in the liquid state. The inflow boundary conditions fix the

Lt 1o
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No discontinuity in the bulk fluid properties is evidenced, however, as the transition into the
two-phase region takes place very near the critical point of the fluid. Calculations without the
equilibrium two-phase flow model were found to be unstable, as the rapid expansion drives the
fluid density in the corner region below the liquid spinodal value. The pressure values remain
reasonable, in contrast to the octane expansion described above, but the acoustic speeds become
complex. Only AUSM+ solutions are shown; LDFSS solutions are very similar. The effects of
the minmod-limited second-order extension are confined to the orifice region, where the second-
order calculation results in more crisp predictions of the supersonic flow response. Features
of note include regular oblique-shock and Mach wave reflections as well as a small pocket of
reversed flow downstream of the corner. The displacement effect of this structure forms an area

minimum, allowing the transition to supersonic flow.

1.5.4 Liquid Octane Expansion Through a Sharp Orifice Nozzle

The fourth test case involves the acceleration of liquid octane through a capillary tube. Devices
similar to this are used in fuel injection systems. Again, a two-block grid is considered. with
reservoir containing 65x153 nodes and the capillary tube containing 97x97 nodes. This problem
is also axisymmetric, and the reservoir conditions are P, = 10x10° Paand T, = 400K . Octane is
liquid under these conditions. The closeup in Fig. 1.7 plots density contours in the vicinity of the
reservoir / tube juncture. The rapid pressure drop experienced as the Auid accelerates around
the sharp corner cavitates the fluid, initially producing a bubble of nearly pure vapor. The wake
of the bubble is a two-phase mixture of Hujd. charactetized by an increasing liquid content as
the flow proceeds downstream. The two-phase / single-phase interface is sharply captured near
the corner, with the shape of the buhble determined by a balaace between the pressure jump
and “nuerical” surface tension tesulting from the upwinding. Differences between frst-order
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Figure 1.7: Density contours: octane cavitation.

AUSM+ and LDFSS solutions are minimal. These solutions are extremely difficult to obtain.
With the current methods, the iteration must be nearly time-accurate with global time-stepping
in order to capture stable bubble growth. Local time steps result in the intermittent appearance
of octane vapor bubbles, which grow, propagate, and collapse in a highly unsteady manner. With
the present thermodynamic model, the collapse of a vapor bubble results in higher temperatures,
raising the vapor pressure and promoting more bubble growth. While many of these trends are
consistent with the physics of cavitation bubble formation [4], the robustness and efficiency of
the current procedures in capturing steady bubble behavior is a concern. The same is true for
the higher-order extensions, which are even more susceptible to transient bubble growth. As a
result, no higher-order solutions for this problem are yet available. Cavitation calculations using
the Sanchez-Lacombe [12] equation of state, a lattice-fluid formulation valid for high molecular
weight liquids, are underway for octane and water; these indicate somewhat better numerical

behavior.

1.6 Concluding Remarks

Simple modifications for extending AUSM+ and LDFSS low-diffusion upwind schemes schemes
toward the calculation of real fluids at all speeds and at all states of compressibility have
been outlined in this section. The real fluid state description is based on the Peng-Robinson
equation, enhanced by an equilibrium model for liquid-vapor phase transitions. Results indicate
that the modifications proposed herein are effective in simulating incompressible liquid and
compressible vapor responses as well as multiphase flow phenomena. such the appearance of
cavitation bubbles and vapor-liquid condensation shocks. A point of concern is the robustness
of the current procednres in vapturing stationary cavitation bubbles - modifications to improve
this behavior are underway. This work provides a starting point for a more comprehensive
tnvestigation of nupwind iscretization techniques for general nonequilibrium multiphase Hows -
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